検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 3 件中 1件目~3件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Archie's cementation factors for natural rocks; Measurements and insights from diagenetic perspectives

Yuan, X.*; Hu, Q. H.*; Fang, X.*; Wang, Q. M.*; Ma, Y.*; 舘 幸男

Sedimentary Geology, 465, p.106633_1 - 106633_14, 2024/05

Archie's cementation factor, m, is a critical parameter for petrophysical studies, and the value is influenced by several factors such as the shape, type, and size of grains, degrees of diagenesis, and associated pore structure. Using integrated experimental and theoretical approaches, the goal of this study is to obtain the cementation factor of rocks (both reservoir rock and caprock) and assess the impact of diagenesis processes on the values of the cementation factor. Thirteen samples of geologically diverse rocks (six mudstones, four fossiliferous limestones, two marbles, and one sandstone) were selected to achieve these research objectives. Two approaches, the diffusion of gas tracers and the Bosanquet formula calculation using pore-throat sizes from mercury intrusion porosimetry analyses, were used to derive the cementation factors of these rock samples. These rocks were categorized into two groups based on the correlation between average pore-throat diameter and diffusivity, and an exponential-law relationship between the cementation factor and porosity was determined for these sample groups. In addition, thin-section petrography and field emission-scanning electron microscopy observations were utilized to investigate diagenetic processes, with four diagenetic patterns being established: (1) strong compaction, strong cementation, and weak dissolution-diagenesis pattern; (2) weak compaction, medium cementation, and weak dissolution-diagenesis pattern; (3) weak compaction, medium cementation, and strong dissolution-diagenesis pattern; and (4) fracture-matrix pattern. The results indicated that diagenetic processes and microfractures contribute to the variability in the cementation factors in these rock samples.

論文

Micro- to nano-scale areal heterogeneity in pore structure and mineral compositions of a sub-decimeter-sized Eagle Ford Shale

Wang, Q.*; Hu, Q.*; Zhao, C.*; Yang, X.*; Zhang, T.*; Ilavsky, J.*; Kuzmenko, I.*; Ma, B.*; 舘 幸男

International Journal of Coal Geology, 261, p.104093_1 - 104093_15, 2022/09

 被引用回数:5 パーセンタイル:66.48(Energy & Fuels)

To understanding the spatial heterogeneity of mineral and pore structure variations in fine-grained shale, microscale X-ray fluorescence (micro-XRF) mapping, (ultra-) small-angle X-ray scattering [(U)SAXS] and wide-angle X-ray scattering were applied for two samples from a piece of Eagle Ford Shale in South Texas. Thin section petrography and field emission-scanning electron microscopy, X-ray diffraction (XRD), total organic carbon, and pyrolysis were also utilized to investigate the potential spatial heterogeneity of pore types, mineral and organic matter compositions for both samples. Overall, the siliceous-carbonate mineral contents in these carbonate-rich Eagle Ford Shale vary between laminations at mm scales. By analyzing six selected sub-samples on each of two samples with X-ray scattering and XRD techniques, nm-sized pores are mainly interparticle ones in the higher calcite regions, where the porosity is also relatively lower, while the lower calcite regions consist of both interparticle and intraparticle pore types with higher porosity. Finally, the micro-XRF and (U)SAXS are combined to generate porosity distribution maps to provide more insights about its heterogeneity related to the laminations and fractures at our observational scales.

口頭

Microscopic pore structure and macroscopic fluid flow-chemical transport in host rocks and barrier materials

Wang, Q. M.*; Hu, Q.*; Zhao, C.*; Zhang, T.*; 深津 勇太; 舘 幸男

no journal, , 

Fluid flow and chemical transport in porous media are the macroscopic consequences of pore structure, which integrates geometry (e.g., pore size and surface area, pore-size distribution) and topology (e.g., pore connectivity). Low-permeability geological media whose pores are poorly interconnected will exhibit the characteristics of anomalous diffusion and sample size-dependent effective porosity, which will strongly impact long-term net diffusion and retention of radionuclides in geological repository settings. A suite of experimental approaches is utilized to study the microscopic pore structure and macroscopic fluid flow and chemical transport for a range of natural rocks (such as clay/shale, crystalline rock, salt), in addition to clay minerals. With a particular focus on quantifying the presence and magnitude of isolated pores for a reduced effective porosity in low-permeability geomedia, the integrated methodologies for basic properties and pore structure characterization include X-ray diffraction, thin section petrography, grain size distribution, water immersion porosimetry, mercury intrusion porosimetry, nitrogen physisorption, scanning electron microscopy, X-ray computed tomography, and (ultra-)small angle neutron (or X-ray) scattering. In addition, custom-designed gas diffusion, tracer recipe involving a range of anionic and cationic chemicals with subsequent analyses by laser ablation and inductively coupled plasma-mass spectrometry, along with batch sorption, column transport, and imbibition tests were conducted for coupled effects of pore structure and chemical retention/transport.

3 件中 1件目~3件目を表示
  • 1